

Karmen Documentation

Superseded by docs.karmen.tech [https://docs.karmen.tech], please read the current documentation there [https://docs.karmen.tech].

Index

Configuration

If you are running Karmen Hub in the recommended way, you can adjust
the software’s behaviour by plenty of environment variables.

These are interpreted in the docker-compose.yml file that is part of the release. Be aware
that if you are working with environment variables in the docker containers, the names
might be different, because the variables there are interpreted from within the docker containers
and not from the host machine. For example KARMEN_REDIS_HOST is accessible as REDIS_HOST
within the container.

Deployment specific options

These should always be setup so your instance works as expected.

	Variable name

	Default

	Description

	KARMEN_SECRET_KEY

	None

	A unique key that is used for session encryption.

	KARMEN_FRONTEND_BASE_URL

	None

	Base URL of Karmen Hub frontend. This is used as a base URL in e-mails
that Karmen Hub is sending ocassionally.

	KARMEN_CLOUD_MODE

	0

	If on, the network scan feature is disabled and printers can be connected only via
websocket-proxy [https://github.com/fragaria/websocket-proxy]. If off, you can connect to printers via
http or https.

	KARMEN_SOCKET_API_URL

	None

	Base URL such as http://path.to/websocket/api/%s where the
websocket-proxy [https://github.com/fragaria/websocket-proxy] is accepting connections. USed only when
KARMEN_CLOUD_MODE is on. The %s is replaced by device token during runtime.

	KARMEN_MAILER

	dummy

	Type of mailer that is used in the backend to send e-mail. Supported values are
ses, smtp, mailgun and dummy. Dummy mailer is writing to logfile, others are calling an external mail
sending service. Mailers can be further configured with KARMEN_MAILER_CONFIG.

	KARMEN_MAILER_FROM

	Karmen <karmen@karmen.local>

	Default sender of all e-mails.

	KARMEN_MAILER_CONFIG

	{}

	JSON with configuration required by the chosen KARMEN_MAILER. The JSON
should be enclosed in ' or escaped so the shell does not interpret its value.

For mailgun: {"mailgun_domain": "...", "mailgun_api_key": "..."}.

For ses: {"aws_secret_key": "...", "aws_access_key": "...", "aws_region": "..."}

For smtp: {"host": "...", "port": "...", "ssl": "...", "login": "...", "password": "..."}

Advanced options

These can help you if your deployment requires some special care.

	Variable name

	Default

	Description

	KARMEN_BACKEND_SENTRY_DSN

	None

	Sentry [https://sentry.io/] DSN to which the backend will log errors.
If empty, no logging is happenning.

	KARMEN_FRONTEND_SENTRY_DSN

	None

	Sentry [https://sentry.io/] DSN to which the frontend will log errors.
If empty, no logging is happenning.

	KARMEN_HOST

	0.0.0.0

	Host interface on which Karmen listens. This is useful when you need to restrict
access.

	KARMEN_PORT

	80

	Port on which Karmen listens. This is useful if you are running Karmen in an environment
shared with other services.

	KARMEN_UPLOAD_FOLDER

	./karmen-files

	Location of uploaded files. This directory is mounted as a volume into
the container.

	KARMEN_DB_DIR

	./db/data

	Location of PostgreSQL datadir.

	KARMEN_BACKEND_HOST

	127.0.0.1

	Host on which the backend API server listens.

	KARMEN_BACKEND_PORT

	9764

	Port on which the backend API server listens.

	KARMEN_FRONTEND_HOST

	127.0.0.1

	Host on which the frontend server listens.

	KARMEN_FRONTEND_PORT

	9765

	Port on which the frontend server listens.

	KARMEN_POSTGRES_HOST

	127.0.0.1

	Host of the PostgreSQL [https://www.postgresql.org/] database. You
don’t have to use the dockerized instance bundled within the release.

	KARMEN_POSTGRES_PORT

	5433

	Port of the PostgreSQL [https://www.postgresql.org/] database. You
don’t have to use the dockerized instance bundled within the release.

	KARMEN_POSTGRES_DB

	print3d

	Name of the PostgreSQL [https://www.postgresql.org/] database. This DB is
created for you during the first run.

	KARMEN_POSTGRES_USER

	print3d

	Username for the PostgreSQL [https://www.postgresql.org/] database. This
user is created for you during the first run.

	KARMEN_POSTGRES_PASSWORD

	print3d

	Password for the PostgreSQL [https://www.postgresql.org/] database.
This password is set for the user during the first run.

	KARMEN_REDIS_HOST

	127.0.0.1

	Host of Redis [https://redis.io/] storage. You don’t have to use the
dockerized instance bundled within the release. We don’t support protected instances at the moment, though.

	KARMEN_REDIS_PORT

	6379

	Port of Redis [https://redis.io/] storage. You don’t have to use the dockerized
instance bundled within the release. We don’t support protected instances at the moment, though.

	KARMEN_NETWORK_TIMEOUT

	5

	Timeout for HTTP reads

	KARMEN_VERIFY_CERTIFICATES

	1

	Whether the app should verify HTTPS certificates. It should and you should
never change this setting unless you know exactly what you are doing.

F.A.Q.

How does the network scanning work?

The optional discovery mode is scanning [https://linux.die.net/man/1/arp-scan]
a configured network interface for all devices and tries to call the common HTTP(S) ports to discover
a known 3D printer service such as Octoprint. If it finds one, it adds it
automatically to Karmen. This feature is not available in the cloud mode.

How can I add a password protected Octoprint?

Octoprint’s protected instances can be communicated with by using an
API key [http://docs.octoprint.org/en/master/api/general.html#authorization]
that you can add to each printer on its settings screen.

Can I run more Karmen Hub instances on a single machine?

Yes, you can. The docker-compose.yml file can be parametrized by a few
environment variables and you can reconfigure all of the things needed to
create multiple instances of Karmen Hub next to each other.

You need to configure an isolated disk space for g-codes and for the database and
you need to pick free ports for all the services.

This is not ideal though, as all of the instances are run by the same system users
and might share some defaults such as database password. This might change in the future.

KARMEN_FILES_DIR=./k2-files \
KARMEN_DB_DIR=./k2-pg-datadir \
KARMEN_POSTGRES_PORT=5434 \
KARMEN_REDIS_PORT=6380 \
KARMEN_BACKEND_PORT=9800 \
KARMEN_FRONTEND_PORT=9801 \
KARMEN_PORT=8081 \
 docker-compose up

First run

So you have installed Karmen, launched the UI in your browser and
all you can see is a login form. What next?

User access model

Like almost any other software out there, Karmen has a concept of users built-in.
Without a valid user session, you are not able to do anything with Karmen.

Users are grouped into organizations. In each organization, users can have one of the
two roles in Karmen Hub:

	Administrators

	Users

Administrators can manage printers and users. Common users can use all of the printers and
access the shared gcode library.

Upon installation, there is an administrator account ready with username karmen and
password karmen3D for you. The application will prompt you to change the password upon
the first login. So make sure that you log in right after the installation is complete
so nobody else can hijack the installation from you.

There is also a Default organization ready for you. You can rename it at any time. As an
administrator, you can invite more users to your organization. That requires a working mailing
service.

Also, for some operations, such as another password change or adding users, you need to
re-authenticate with your password from time to time. So don’t be alarmed if the application
prompts for your password again.

Handsfree access

Sometimes, you need to access the application automatically - for example to run a monitoring
dashboard or to access the API programatically. For that, Karmen offers API tokens tied to
a certain user account and organization. Everyone can create as many tokens as they want. The API tokens
have the following properties:

	They never expire.

	They are always in the user role, so you cannot use them for adding printers for example.

	They are bound to a single organization.

	They can be revoked from the application.

You can work with your API tokens after clicking your username in the app.

For the monitoring dashboard use case, you can run the UI in your browser directly with the token
like this:

http://<karmen-hub-address>/?token=<my-api-token>

Note

The tokens are signed by the application and if you change the KARMEN_SECRET_KEY value in your
configuration, they will stop working altogether.

If you need to automate some administrative tasks, you should be successful if you copy your active
session token (after you are prompted for password) from a browser’s session cookies. Such token
will expire in a few minutes, though, so you have to be quick.

Installation

Making your printer Karmen-ready

The easiest way is to get yourself a fully plug’n’play
Karmen Pill [https://karmen.tech/en/#products].

For hobbyists, the de-facto standard for making your 3D printer accessible over the network
is Octoprint [https://octoprint.org]. Its installation can be greatly
simplified by using a Raspbian-derived image with a pre-configured installation
called OctoPi [https://github.com/guysoft/OctoPi] that is designed for Raspberry Pi
microcomputers.

Note

There might be other viable solutions, but at the moment, Karmen Hub supports only
Karmen Pill and Octoprint.

Karmen Hub supports password-protected Octoprint [http://docs.octoprint.org/en/master/features/accesscontrol.html]
instances as well, it is possible to attach an API token to a printer on the printer settings screen (the option is
only available when Octoprint is actually password-protected).

Also, make sure that the Octoprint instance is accessible over the network
from a computer on which Karmen Hub is running.

Installing Karmen Hub

Karmen Hub should run on any OS supporting Docker [https://www.docker.com] running on amd64 or arm/v7 architecture.
We recommend to use a standalone computer for it, namely a Raspberry Pi 4 [https://www.raspberrypi.org] is a great fit.
Docker can be easily installed on Raspberry Pi by running a few commands adapted from this
official blogpost [https://blog.docker.com/2019/03/happy-pi-day-docker-raspberry-pi/].
We recommend to use a clean Raspbian image as a base for installing Karmen Hub.

If you use a freshly installed Raspbian image, make sure that you run sudo apt update && sudo apt upgrade -y && sudo reboot
before installing docker. That updates the system to the latest version and performs a restart.

sudo apt install software-properties-common -y
curl -fsSL https://get.docker.com -o get-docker.sh && sh get-docker.sh
sudo usermod -aG docker pi
sudo apt install docker-compose -y
sudo reboot
docker info

The last command should spit out a bunch of information about your docker installation.

The next step is to get a production bundle for Karmen Hub. You can get these in the
Releases section on our GitHub [https://github.com/fragaria/karmen/releases].
Just download the latest stable release.zip to your Raspberry Pi’s home directory and unzip it.

cd
wget -O karmen.zip https://github.com/fragaria/karmen/releases/latest/download/release.zip
unzip karmen.zip
cd karmen

The directory karmen now contains at least the following files:

	docker-compose.yml - A blueprint for all necessary services

	run-karmen.sh - A startup script you can use to launch karmen

	stop-karmen.sh - A script you can use to stop karmen

	update.sh - An update script that can bring your installation up to date

	VERSION - A file with a version number useful for troubleshooting

The database schema is created automatically upon the first start and is kept up to date during updates.
The datafiles are created on your filesystem, not inside the container, so no data will be lost during
Karmen Hub’s downtime.

Karmen Hub requires a little bit of configuration that is done exclusively
with environment variables. The only required one is KARMEN_SECRET_KEY which you should
set to something secret. It is used for session encryption and should be unique for each installation.

Another super important environment variable is KARMEN_CLOUD_MODE. If it is set to 0, Hub will
try to work with Pills, Octoprints and printers available directly over the network. If it is set to
1, the application presumes that it is running somewhere on the internet and the devices are
connected over a specialized websocket proxy [https://github.com/fragaria/websocket-proxy] that comes
preconfigured with Karmen Pill. When you are setting KARMEN_CLOUD_MODE to 1, you also need to provide
KARMEN_SOCKET_API_URL variable which points to the websocket proxy instance.

If you want to allow users registration, tou need to configure a mailing service as well. Consult the
configuration section for more information.

Finally, you can start all of the services. During the first startup, the script will automatically
download (from Docker Hub [https://hub.docker.com/search?q=fragaria%2Fkarmen&type=image]) and run
all of the necessary containers. This might take a few minutes. For the first and
all other starts, you can use the shorthand script like this:

KARMEN_CLOUD_MODE=0 KARMEN_SECRET_KEY=something-secr3t ./run-karmen.sh

The browser-accessible frontend is then accessible on the standard HTTP port 80. Again, consult
the configuration page for more configruation options including the used ports.

You can access the UI by accessing the public IP address of your machine, or by accessing the
<hostname>.local address which is automatically provided by Raspbian. The default hostname
for standard Raspbian is raspberrypi and can be changed from the command line by running the
raspi-config program.

Note

Raspbian and OctoPi provide the <hostname>.local service via
mDNS [https://en.wikipedia.org/wiki/Multicast_DNS]. This technology might not work on some
clients without prior configuration.

You can stop everything by running

./stop-karmen.sh

You probably want to start Karmen every time your Raspberry Pi boots up. Arguably the easiest (but in no way perfect) method
is to add the following line at the end of your /etc/rc.local file just before the exit 0 line:

KARMEN_CLOUD_MODE=0 KARMEN_SECRET_KEY=something-secr3t /home/pi/karmen/run-karmen.sh >> /home/pi/karmen/startup.log

This will also put all of the startup information into a logfile in case you need to debug a broken start of Karmen.
Be aware that this method starts all of the containers under a root account, which might not be the best idea.

An alternative might be a systemd [https://www.linode.com/docs/quick-answers/linux/start-service-at-boot/] service
which might be setup with a file like this:

[Unit]
Description=Karmen
DefaultDependencies=no
After=docker.service

[Service]
Environment="KARMEN_CLOUD_MODE=0"
Environment="KARMEN_SECRET_KEY=something-secr3t"
Environment="KARMEN_HOST=127.0.0.1"
Environment="KARMEN_PORT=3776"
User=pi
Group=users
ExecStart=/usr/bin/karmen
RemainAfterExit=yes
ExecStop=/usr/bin/karmen-stop

[Install]
WantedBy=multi-user.target

The /usr/bin/ scripts are just links to the aforementioned run-karmen.sh and stop-karmen.sh scripts.

You should also keep your installation up to date at all times.

After the installation is ready, you can proceed with your first run.

Internet access

Karmen Hub is successfully running in your environment, but to make the whole system
really useful, there is still one thing missing: The ability to manage your printers
from anywhere in the world.

There are multiple ways of doing that, take the following list as an inspiration on
how it can be done.

Karmen Cloud

To most straitforward solution is to get our Karmen Pill and register into our cloud
service that launches in 2020. See our product page [https://karmen.tech] for more
information.

Deployment accessible from the internet

This is the obvious choice. You can run Karmen Hub on a server accessible from the internet.
But you have to have your Octoprint’s accessible over the internet as well. Don’t forget
to protect all of your services that are publicly accessible with passwords and TLS.

Websocket proxy

You can use our websocket-proxy [https://github.com/fragaria/websocket-proxy] that is supported
in Karmen Hub out of the box with KARMEN_SOCKET_API_URL and KARMEN_CLOUD_MODE options. It
requires a client running next to your Octoprint and a server running in a location accessible by
Karmen Hub. The communication is secured and encrypted.

Port mapping on a router

If you have your service set up behind a router with a fixed public IP address,
you can use the port mapping (or port forwarding) [https://en.wikipedia.org/wiki/Port_forwarding]
technique.

Just pick a port number and set up a route on your router [https://portforward.com/router.htm]
that maps an outgoing port to the internal device’s address.

An example: Your public IP is 1.2.3.4, Karmen is running locally on 192.168.3.89 and you pick
an external port 44444. After setting things up properly, Karmen will be available on 1.2.3.4:44444.

All traffic including the webcam streams is now routed to the internet through this mapped port.

This solution is not really safe since the traffic is not encrypted. You should protect the outgoing
service with a TLS certificate.

Virtual Private Network (VPN)

Some routers offer a simple way of creating a VPN, basically a tunnel that makes your local
network accessible via a secured connection from anywhere in the world. This solution is better
than simple port mapping, because it uses an encrypted communication channel by definition.

If your router does not support a VPN, you can get away with other solutions, such as
PiVPN [http://www.pivpn.io/]. A VPN also makes all of your printers available directly,
so the webcam streams might be a little smoother.

SSH tunneling

If you have no control over the network element that provides the internet access or you
cannot simply run or get a VPN, SSH tunneling [https://www.ssh.com/ssh/tunneling/]
is yet another option that can be used.

In short, you open an SSH tunnel from the computer that is running the service to a computer
that is visible from the internet. A part of that tunnel is again a port mapping. So let’s
say that Karmen Hub is running on 192.168.3.89:80 and your internet-visible computer is 1.2.3.4.

ssh -R 8888:localhost:80 1.2.3.4

By running that command, you are routing Karmen Hub’s local port 80 to 1.2.3.4:8888. So anybody that
can access 1.2.3.4:8888 can now access Karmen Hub. In this situation, the traffic between 1.2.3.4
and Karmen Hub is encrypted. The traffic between the end user and 1.2.3.4 is not, unless the public
facing computer is configured to use a TLS certificate.

Online tunneling services

There are some online services such as ngrok [https://ngrok.com/] that can establish a publicly
accessible tunnel to your computer. These are usually great for a temporary or testing setup,
but for a permanent solution, other approaches are usually better.

Overview

First, there was a 3D printer. Then, there was a network connected 3D printer
with a controlling software like Octoprint [https://octoprint.org],
Astroprint [https://www.astroprint.com/] or Repetier [https://www.repetier.com/].

The next obvious step is a service that can talk to multiple network connected
3D printers. And although there are services that aspire to do such job, there does
not seem to be an open source version that you could run as a self hosted, on-premise
software.

So how does Karmen work?

The control hub

This is the main part of Karmen consisting of a backend service [https://github.com/fragaria/karmen/tree/master/src/karmen_backend]
in Python and a light frontend client [https://github.com/fragaria/karmen/tree/master/src/karmen_frontend]
in Javascript accessible from a browser.

The backend essentially works as a proxy for any configured and connected printer that
can talk in one of the supported dialects.

To add a new printer, you just tell Karmen the IP address of that printer
and that’s it. Everything else is done automatically.

The printers

Any 3D printer that uses a supported software connector can be added to the system. Right now,
we support only Octoprint, but more will come in the future. It is, of course, required
for the two devices to see each other on the network. You have essentially two options for
that:

	Connect everything into an existing network

	Create an isolated network for the printers and expose the control hub’s user interface
to a commonly accessible network

Any of the two will work, just make sure that none of the devices are directly accessible
from the internet without proper security.

Printing

Are you used to sending your G-Codes into your printer directly from your slicer of choice
like PrusaSlicer [https://www.prusa3d.com/prusaslicer/],
Slic3r [https://slic3r.org/] or the appropriate Cura plugin [https://ultimaker.com/software/ultimaker-cura]?
You can use your slicer with Karmen as well, as long as your slicer can integrate with
Octoprint [https://octoprint.org].

Karmen Hub is partially mimicking Octoprint’s API that the slicers are calling. By setting up the address
of the printer in the slicer to http://<karmen IP address>/api/octoprint-emulator,
you can send your G-Codes directly to Karmen Hub that is emulating Octoprint. You might need to experiment
with omitting the http:// part or adding a / to the end of the address. Every slicer might
accept a slightly different format.

In Karmen Hub you can then easily choose on which printer it should get printed.

Instead of the App key that you would copy over from Octoprint, you should create Karmen
API token that can be safely stored in the Slicer’s configuration. Remember that Karmen Hub
API tokens are always scoped to a certain organization, so your G-Code will be available only there.

Since Karmen Hub at this time has no knowledge of the printer’s properties (such as filament
material or a heatbed size), the G-Codes cannot be sent to a printer right away and you
have to always go to Karmen to start the print manually.

Updating

Every software needs to be updated over time to get new functionality or just
to fix some bugs. Because Karmen is distributed as a bunch of Docker images,
updating is quite easy.

Finding out about the release

All new releases show up in the releases section [https://github.com/fragaria/karmen/releases]
on our GitHub. You can get notifications if you start watching the repository or you can subscribe
to an Atom feed [https://github.com/fragaria/karmen/releases.atom]. Any major changes will also
probably be announced on our social media.

The easy way

We have prepared an update script that can perform all of the steps for you. However, it doesn’t hurt
to always have a manual backup before running an automated update.

If you followed the installation guide, you will have a karmen directory
in Raspberry Pi’s home directory of /home/pi. And there should be an update.sh script. It does all
the steps described below for you and after running it, you should be ready to start Karmen Hub again from a new version
either by restarting your device (if you have set up the startup script), or by running

<YOUR CONFIGURATION ENVVARS> /home/pi/karmen/run-karmen.sh

By default, the update script will update to the latest stable release. If you’re feeling adventurous,
you may update to an unstable release by running update.sh --edge.

Updating manually

All of the following commands are run from the /home/pi/karmen directory unless stated otherwise.

	Stop Karmen with ./stop-karmen.sh.

	Do a backup of the whole karmen directory including the PotsgreSQL datafiles.

	Get the latest (or specific) release.zip from github and unpack its contents into the karmen directory.

	Run docker-compose pull to get the latest versions of docker containers.

	Start Karmen again with

<YOUR CONFIGURATION ENVVARS> /home/pi/karmen/run-karmen.sh

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Karmen Documentation

_static/up-pressed.png

_static/up.png

_static/plus.png

